Cambridge International Examinations

Cambridge International Advanced Level

FURTHER MATHEMATICS

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG

BOD	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only - often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOSSee Other Solution (the candidate makes a better attempt at the same question)	

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR-1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Partial Marks	Guidance
1	$\dot{x}=-6 \cos ^{2} t \sin t, \quad \dot{y}=6 \sin ^{2} t \cos t$	1	B1	
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-\tan t \quad \text { (OE) }$	1	B1	
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\sec ^{2} t \times \frac{-1}{6 \cos ^{2} t \sin t}=\frac{1}{6} \sec ^{4} t \operatorname{cosec} t \quad \mathrm{AG}$	2	M1A1	
		4		
2	$m^{2}+4 m+4=0 \Rightarrow(m+2)^{2}=0 \Rightarrow m=-2$	1	M1	
	CF: $A \mathrm{e}^{-2 t}+B t \mathrm{e}^{-2 t}$ soi	1	A1	
	$\mathrm{PI}: x=p t^{2}+q t+r \Rightarrow \dot{x}=2 p t+q \Rightarrow \ddot{x}=2 p$	1	M1	
	$\Rightarrow 2 p+8 p t+4 q+4 p t^{2}+4 q t+4 r=7-2 t^{2}$	1	M1	
	$\Rightarrow p=-\frac{1}{2}, q=1, r=1$	1	A1	
	GS: $x=A \mathrm{e}^{-2 t}+B t \mathrm{e}^{-2 t}-\frac{1}{2} t^{2}+t+1$	1	A1	
		6		

Question	Answer	Marks	Partial Marks	Guidance
3	$n=1$ in formula gives $a^{0} \mathrm{e}^{a x}+a x \mathrm{e}^{a x}=\mathrm{e}^{a x}+a x \mathrm{e}^{a x}$	1	B1	
	$\frac{\mathrm{d}}{\mathrm{d} x}\left(x \mathrm{e}^{a x}\right)=\mathrm{e}^{a x} \times 1+x \cdot a \mathrm{e}^{a x}=\mathrm{e}^{a x}+a x \mathrm{e}^{a x} \Rightarrow \mathrm{H}_{1}$ is true oe	1	B1	
	Assume H_{k} is true, i.e. $\frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}}\left(x \mathrm{e}^{a x}\right)=k a^{k-1} e^{a x}+a^{k} x \mathrm{e}^{a x}$.	1	B1	
	$\frac{\mathrm{d}^{k+1}}{\mathrm{~d} x^{k+1}}\left(x \mathrm{e}^{a x}\right)=k a^{k} \mathrm{e}^{a x}+a^{k} \mathrm{e}^{a x}+a^{k+1} x \mathrm{e}^{a x}$	1	M1	
	$=(k+1) a^{k} \mathrm{e}^{a x}+a^{k+1} x \mathrm{e}^{a x}$	1	A1	
	$\Rightarrow \mathrm{H}_{k+1}$ is true, hence by PMI H_{n} is true for all positive integers n.	1	A1	
		6		
4(i)	$\left(\frac{6}{\sqrt{1}}-\frac{7}{\sqrt{3}}\right)+\left(\frac{7}{\sqrt{3}}-\frac{8}{\sqrt{7}}\right)+\ldots+\left(\frac{35}{\sqrt{871}}-\frac{36}{\sqrt{931}}\right)=6-\frac{36}{\sqrt{931}}=4.820$	3	M1A1A1	
4(ii)	$6-\frac{n+6}{\sqrt{n^{2}+n+1}}>4.9 \Rightarrow 0.21 n^{2}-10.79 n-34.79(>0)$	2	M1**1	
	$\Rightarrow n>54.42 \ldots$ so 55 terms required.	2	DM1A1	
		4		

Question	Answer	Marks	Partial Marks	Guidance
5	$\alpha+\beta+\gamma=-p=15 \Rightarrow p=-15$	1	B1	
	$2(\alpha \beta+\beta \gamma+\gamma \alpha)=(\alpha+\beta+\gamma)^{2}-\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)=2 q$	1	M1	
	$\Rightarrow q=\frac{1}{2}(225-83)=71$	1	A1	
		3		
	$\frac{36}{\alpha}=15-\alpha \quad(=[\beta+\gamma])$	1	M1	
	$\Rightarrow a^{2}-15 \alpha+36=0 \Rightarrow \alpha=3, \alpha \neq 12$, e.g. since $12^{2}>83$ or other reason	2	M1A1	
	$\beta \gamma=71-36=35$	1	B1	
	$\Rightarrow r=-\alpha \beta \gamma=-3 \times 35=-105$	1	A1	(extra answer penalised)
		5		

Question	Answer	Marks	Partial Marks	Guidance
6	$\lambda=1:\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 10 & -8 & 10 \\ 7 & -5 & 7\end{array}\right\|=\left(\begin{array}{c}-6 \\ 0 \\ 6\end{array}\right) \sim\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ oe	2	M1A1	
	$\lambda=3:\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 0 \\ 10 & -10 & 10\end{array}\right\|=\left(\begin{array}{c}0 \\ 20 \\ 20\end{array}\right) \sim\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ oe	1	A1	
		3		
	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 10 & -7 & 10 \\ 7 & -5 & 8\end{array}\right)\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{c}0 \\ -4 \\ -2\end{array}\right)=-2\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right) \Rightarrow \lambda=-2$	2	M1A1	
	$\mathbf{D}=\left(\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right), \quad \mathbf{P}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & -1 & 1\end{array}\right)$ (or other multiples or permutations).	2	B1 \checkmark B1 \downarrow	
	$\operatorname{Det} \mathbf{P}=-1$ (or 1 depending on permutation).	1	B1	
	$\operatorname{Adj} \mathbf{P}=\left(\begin{array}{ccc}1 & -1 & 1 \\ -1 & 0 & 0 \\ -2 & 1 & 2\end{array}\right) \Rightarrow \mathbf{P}^{-1}=\left(\begin{array}{ccc}-1 & 1 & -1 \\ 1 & 0 & 0 \\ 2 & -1 & 2\end{array}\right) \quad$ (or other permutations).	2	M1A1	
		5		

Question	Answer	Marks	Partial Marks	Guidance
7	$\left(\begin{array}{cccc}1 & -2 & -3 & 1 \\ 3 & -5 & -7 & 7 \\ 5 & -9 & -13 & 9 \\ 7 & -13 & -19 & 11\end{array}\right) \sim\left(\begin{array}{cccc}1 & -2 & -3 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 1 & 2 & 4\end{array}\right) \sim\left(\begin{array}{cccc}1 & -2 & -3 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$	2	M1A1	
	$\mathrm{r}(\mathbf{M})=4-2=2$	1	A1	
	$\begin{array}{r} x-2 y-3 z+t=0 \\ y+2 z+4 t=0 \end{array}$	1	M1	
	E.g. Set $z=\lambda$ and $t=\mu \Rightarrow y=-2 \lambda-4 \mu$ and $x=-\lambda-9 \mu$	1	M1	
	\Rightarrow Basis is $\left\{\left(\begin{array}{c}-1 \\ -2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-9 \\ -4 \\ 0 \\ 1\end{array}\right)\right\}$	1	A1	
		6		
	$\mathbf{x}=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)+\lambda\left(\begin{array}{l}-1 \\ -2 \\ 1 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}-9 \\ -4 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}a \\ b \\ -1 \\ -1\end{array}\right)$	1	M1	
	Solving: $\lambda=-4$ and $\mu=-5$ $\Rightarrow a=50, b=30$.	3	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$	
		4		

Question	Answer	Marks	Partial Marks	Guidance
8	$y^{\prime}=0 \Rightarrow(x+1)(4 x+k)-\left(2 x^{2}+k x\right) \times 1=0$	1	M1	
	$\Rightarrow 4 x^{2}+(4+k) x+k-2 x^{2}-k x=0 \Rightarrow 2 x^{2}+4 x+k=0$	1	A1	
	$B^{2}-4 A C<0 \Rightarrow$ no stationary points $\Rightarrow 16-8 k<0$ $\Rightarrow k>2$ for no stationary points.	3	$\begin{aligned} & \text { M1A1 } \\ & \text { A1 } \end{aligned}$	
		5		
	When $k=4$: Vertical asymptote: $x=-1$	1	B1	
	Oblique asymptote: $y=2 x+2-\frac{2}{x+1} \Rightarrow y=2 x+2$	2	M1A1	
	Axes and asymptotes Each branch.	3	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1B1 } \\ \hline \end{array}$	
		6		

Question	Answer	Marks	Partial Marks	Guidance
9	$\int_{1}^{e} \ln x \mathrm{~d} x=x \ln x-x$	1	B1	
	$I_{n}=\int_{1}^{\mathrm{e}}(\ln x)^{n-1} \cdot \ln x \mathrm{~d} x$	1	M1	
	$=\left[(\ln x)^{n-1}(x \ln x-x)\right]_{1}^{\mathrm{e}}-\int_{1}^{\mathrm{e}}(n-1)(\ln x)^{n-2} \cdot \frac{1}{x}(x \ln x-x) \mathrm{d} x$	2	M1A1	
	$=0-\int_{1}^{\mathrm{e}}(n-1)(\ln x)^{n-2}(\ln x-1) \mathrm{d} x=(n-1)\left[I_{n-2}-I_{n-1}\right] \quad$ (AG)	2	M1A1	
	Alternative for obtaining reduction formula: $I_{n}=\int_{1}^{\mathrm{e}}(\ln x)^{n} \times 1 \mathrm{~d} x=\left[x(\ln \mathrm{x})^{n}\right]_{1}^{\mathrm{e}}-\int_{1}^{e} n(\ln \mathrm{x})^{n-1} \mathrm{~d} x$	2	M1A1	
	$\Rightarrow I_{n}=\mathrm{e}-n I_{n-1}$	1	A1	
	Similarly $I_{n-1}=\mathrm{e}-(n-1) I_{n-2}$	1	B1	
	$\Rightarrow I_{n}+n I_{n-1}=I_{n-1}+(n-1) I_{n-2}$	1	M1	
	$\Rightarrow I_{n}=(n-1)\left[I_{n-2}-I_{n-1}\right]$ (AG)	1	A1	
		6		

Question	Answer	Marks	Partial Marks	
	$I_{0}=[x]_{1}^{\mathrm{e}}=e-1$	1	B1	
	$I_{1}=[x \ln x-x]_{1}^{\mathrm{e}}=1$	1	B1	
	$I_{2}=1 \times(\mathrm{e}-1-1)=\mathrm{e}-2$	1	M1	
	$I_{3}=2\left(I_{1}-I_{2}\right)=2(1-[\mathrm{e}-2])=6-2 \mathrm{e}$	2	A1	
	MV $=\frac{I_{3}}{\mathrm{e}-1}=\frac{6-2 e}{e-1}$		$\mathbf{6} 1$ A1 \checkmark	

Question	Answer	Marks	Partial Marks	Guidance
10	$(\cos \theta+\mathrm{i} \sin \theta)^{5}=\cos 5 \theta+\mathrm{i} \sin 5 \theta$	1	B1	
	$(c+\mathrm{i} s)^{5}=c^{5}+5 c^{4} s \mathrm{i}-10 c^{3} s^{2}-10 \mathrm{i} c^{2} s^{3} \mathrm{i}+5 \mathrm{c} s^{4}+s^{5} \mathrm{i}$	2	M1A1	
	$\tan 5 \theta=\frac{5 c^{4} s-10 c^{2} s^{3}+s^{5}}{c^{5}-10 c^{3} s^{2}+5 c s^{4}}$	1	M1	
	Divide numerator and denominator by c^{5} (stated or shown): $\Rightarrow \tan 5 \theta=\frac{5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}$	1	A1	
		5		

Question	Answer	Marks	Partial Marks	Guidance
	$\tan 5 \theta=0 \Rightarrow \theta=\frac{1}{5} \pi, \frac{2}{5} \pi, \frac{3}{5} \pi, \frac{4}{5} \pi, \pi$	1	B1	
	$\begin{aligned} & t^{5}-10 t^{3}+5 t=0 \text { has roots } \\ & \quad \tan \left(\frac{1}{5} \pi\right), \tan \left(\frac{2}{5} \pi\right), \tan \left(\frac{3}{5} \pi\right), \tan \left(\frac{4}{5} \pi\right), \tan \pi \\ & \Rightarrow t^{4}-10 t^{2}+5=0 \text { has roots } \\ & \quad \tan \left(\frac{1}{5} \pi\right), \tan \left(\frac{2}{5} \pi\right), \tan \left(\frac{3}{5} \pi\right), \tan \left(\frac{4}{5} \pi\right) . \end{aligned}$	1	B1	
	$\begin{aligned} & \Rightarrow\left(t^{2}-\tan ^{2}\left(\frac{1}{5} \pi\right)\right)\left(t^{2}-\tan ^{2}\left(\frac{2}{5} \pi\right)\right)=0 \\ & \text { since } \tan \left(\frac{1}{5} \pi\right)=-\tan \left(\frac{4}{5} \pi\right) \text { and } \tan \left(\frac{2}{5} \pi\right)=-\tan \left(\frac{3}{5} \pi\right) . \end{aligned}$	1	M1	
	$\Rightarrow x^{2}-10 x+5=0$ has roots $\tan ^{2}\left(\frac{1}{5} \pi\right)$ and $\tan ^{2}\left(\frac{2}{5} \pi\right)$.(AG)	1	A1	
		4		
	$\sec ^{2} \alpha=1+\tan ^{2} \alpha$	1	M1	
	$y=1+x \Rightarrow x=y-1 \Rightarrow(y-1)^{2}-10(y-1)+5=0$	1	M1	
	$\Rightarrow y^{2}-12 y+16=0$	1	A1	
		3		

Question	Answer	Marks	Partial Marks	Guidance
11 E	E.g. $\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 0 \\ -1 & 0 & 4\end{array}\right\|=\left(\begin{array}{l}8 \\ 4 \\ 2\end{array}\right) \sim\left(\begin{array}{l}4 \\ 2 \\ 1\end{array}\right)$	2	M1A1	
	$\frac{\left(\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right) \cdot\left(\begin{array}{l} 4 \\ 2 \\ 1 \end{array}\right)}{\sqrt{4^{2}+2^{2}+1^{2}}}=\frac{4}{\sqrt{21}} \quad(\mathrm{AG})$	2	M1A1	
		4		
	$\mathbf{p}=\frac{3}{\sqrt{21}}\left(\frac{4 \mathbf{i}+2 \mathbf{j}+\mathbf{k}}{\sqrt{21}}\right)=\frac{1}{7}(4 \mathbf{i}+2 \mathbf{j}+\mathbf{k})$	1	B1	
	Line $A P: \mathbf{r}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+t\left(\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right)$	2	M1A1	
	For Q $1-3 t=0 \Rightarrow t=\frac{1}{3} \Rightarrow \mathbf{q}=\frac{1}{3}\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$	2	M1A1	
		5		

Question	Answer	Marks	Partial Marks	Guidance
	E.g. $\overrightarrow{A B}=\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right), \overrightarrow{B Q}=\frac{1}{3}\left(\begin{array}{c}0 \\ -4 \\ 1\end{array}\right)$	1	B1	
	$\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 0 \\ 0 & -4 & 1\end{array}\right\|=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)$	2	M1A1	
	$\cos ^{-1}\left\|\frac{\left(\begin{array}{l} 4 \\ 2 \\ 1 \end{array}\right) \cdot\left(\begin{array}{l} 2 \\ 1 \\ 4 \end{array}\right)}{\sqrt{21} \cdot \sqrt{21}}\right\|=\cos ^{-1} \frac{8+2+4}{21}=\cos ^{-1} \frac{14}{21}=\cos ^{-1} \frac{2}{3} \quad(\mathrm{AG})$	2	M1A1	
		5		

Question	Answer	Marks	Partial Marks	Guidance
110	Closed curve through pole with correct orientation. Completely correct.	2	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$	
	$\begin{aligned} 2 \times \frac{1}{2} a^{2} \int_{\frac{1}{2} \pi}^{\pi} & \left(1-2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta \\ & =a^{2} \int_{\frac{1}{2} \pi}^{\pi}\left(\frac{3}{2}-2 \cos \theta+\frac{1}{2} \cos 2 \theta\right) \mathrm{d} \theta \end{aligned}$	2	M1M1	
	$=a^{2}\left[\frac{3}{2} \theta-2 \sin \theta+\frac{1}{4} \sin 2 \theta\right]_{\frac{1}{2} \pi}^{\pi}$	2	M1A1	
	$=a^{2}\left(\frac{3}{4} \pi+2\right)$	1	A1	
		5		
	$\left(\frac{\mathrm{d} s}{\mathrm{~d} \theta}\right)^{2}=a^{2}\left(1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta\right)$	1	B1	
	$=2 a^{2}(1-\cos \theta)=2 a^{2} .2 \sin ^{2} \frac{1}{2} \theta=4 a^{2} \sin ^{2} \frac{1}{2} \theta \quad(\mathrm{AG})$	2	M1A1	
	$s=2 \times \int_{\frac{1}{2} \pi}^{\pi} 2 a \sin \frac{1}{2} \theta \mathrm{~d} \theta$	1	M1	
	$=4 a\left[-2 \cos \frac{1}{2} \theta\right]_{\frac{1}{2} \pi}^{\pi}$	1	A1	
	$=4 \sqrt{2} a$	2	M1A1	
		7		

